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Abstract: 

Purpose: For assessing the storage life of the terminal-guided projectile optocoupler, the 

reliability of two-factor independent competition failure based on Wiener process-based 

degradation failure and Weibull-based sudden failure is carried out. Methods：In the aspect of 

degradation failure modeling, the linear Wiener process is improved. The drift coefficient is 

randomized by establishing the random variable Arrhenius equation. The problem of 

transforming nonlinear data into linear data is solved by using the time-scale transformation 

formula, and parameter estimates were solved by the two-step maximum likelihood estimation 

method. The Weibull distribution is studied for sudden failure modeling. Assuming m<10 and 

t0.9>10, the “data island” method is proposed. The obtained convergence solution was evaluated 

by the maximum likelihood estimation, and then the initial values of three parameters are 

determined. Results:Its t0.9 is about 25.46 to 27.5 years in the case of degradation failure only and 

17.1 years in the case of sudden failure only. Conclusion:The long-term storage of the optocoupler 

is estimated to be about 17 years under 0.9 reliability conditions due to the combination of 

degradation failure and burst failure. 

Keywords: Optocoupler; Storage reliability; Wiener process; Random variable Arrhenius 

equation; Weibull distribution; Data island. 

 

I. INTRODUCTION 

As an important military material, ammunition is different from other weapons and 

equipment, and it has the important characteristics of “long-term storage, one-time use” [1]. 

Therefore, research on the reliability and storage life of ammunition, especially informational 

ammunition storage, is crucial. At present, informational ammunition has large reserves and high 

value, but over time, its life assessment problem has become increasingly prominent, and the 

large-scale use of optoelectronic devices on informational ammunition has determined that its 
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storage life is quite different from that of ordinary traditional ammunition. Therefore, research on 

the storage reliability technology of informational ammunition optoelectronic devices has 

significant military application value and extensive economic benefits. From the related work at 

home and abroad, when discussing the storage life of informational ammunition, the storage life 

of the weak link must be first considered.  

Through the detection of a large number of missiles with a near-warranty period, it is found 

that the missile’s internal optocoupler has serious quality problems. On the contrary, some 

traditional mechanical components have better storage reliability than electronic components 

represented by optocouplers. In order to evaluate the storage life of the optocoupler inside the 

control cabin of the terminal guided projectile, 10 samples were selected and subjected to 

SSADT. The stress levels are 70 °C, 90 °C, 110 °C and 120 °C. The number of tests was 23, 11, 

10 and 9 times. The test interval is 8 hours, and its total test time is 424 hours. Therefore, the 

moments of stress conversion are 0th hour, 184th hour, 272th hour, 352th hour and 424th hour, 

respectively. According to previous research, the optocouplers have two independent failure 

modes, namely, sudden failure and leakage current degradation failure. In the formal test, both 

failure modes appeared. Among the 10 samples, 6 optocouplers’ leakage current have degraded, 

and the remaining 4 optocouplers have not degraded, but 2 optocouplers have sudden failures 

after heating 408 and 424 hours respectively.  

According to the previous research, it is assumed that product degradation failure and sudden 

failure are independent. So the reliability function of the optocoupler at time t can be obtained as 

the product of the reliability function of the degradation failure and the reliability function of the 

sudden failure [2]. The current problem is transformed into how to obtain the reliability function 

under the condition of sudden failure and degradation failure. Here first discuss the reliability 

function under degraded failure condition, and then discuss the reliability function under sudden 

failure condition. 

 

II. CONSTRUCTION OF ACCELERATION MODEL BASED ON RANDOM 

VARIABLES 

2.1The Focus of Leakage Current Wiener Process Modeling  

Taking the leakage current parameter of the optocoupler as the research object, the accelerated 

degradation model was carried out to evaluate its long-term storage reliability. At this stage, there 

are generally three methods for performance degradation modeling: performance degradation 

orbit method, degradation quantity distribution method, and stochastic process method [3, 4]. The 

first two methods are simpler, most widely used, and mature in technology. However, the 

drawback of both is that it ignores the randomness of the samples during degradation. Compared 

with the degraded orbital method or the degenerate quantity distribution method, the stochastic 

process-based method takes into account the randomness and dynamic characteristics of the 

degraded process, which can better reflect the comprehensive impact of environmental factors on 

product performance [5]. There are three main stochastic processes currently used to construct 
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degenerate models: the Wiener process, the composite Poisson process, and the gamma process. 

Their main difference between Wiener process and Gamma process is that the former can 

describe the case where the delta increment may be negative, while the gamma process requires 

that the delta increment is non-negative [6,7]. The composite Poisson process is usually used to 

describe discrete degradation processes [8]. Among the three, the Wiener process is most widely 

used [9]. Considering that the experimental data degradation increment of the optocoupler may be 

negative, it is determined that the Wiener process is used for the optocoupler's leakage current 

degradation data . 

Assuming that the degradation process of the optocoupler leakage current can be described as 

follow [10]: 

   0 WX t x t W t   
.
                                                                                (1) 

In the above formula, x0 is the initial value of the leakage current, λ is the drift parameter, 

which characterizes the degradation rate, and σW is the diffusion parameter, and W(t) is the 

standard Wiener process.  

 

Fig 1: Leakage current with time 

 

Figure 1 is scatter plots of the raw measurement data for the leakage current of No. 1 to No. 10 

optocouplers over time. The vertical lines in the figure represent the division of different stress 

stages. The horizontal axis represents time in hours. The vertical axis represents the measured 

value in nA. Since only 6 optocoupler leakage currents are degraded, the remaining four leakage 

currents do not change. Therefore, this paper discusses the reliability modeling of six 

optocouplers with leakage current changes. The Wiener process is widely used in the application, 

but when modeling the data of leakage current, it needs to face the following two key issues: 

(1) How to describe the individual differences in leakage current degradation of different 

optocouplers; 

(2) Processing of leakage current nonlinear data. 

The same batch of optocouplers showed individual differences in the rate of degradation of 

leakage current due to factors such as manufacturing process, design error, and environment and 
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materials. In the formal test process, it can be seen from Figure 1 that this phenomenon is 

particularly prominent. Li considers x0 and λ as random variables when evaluating the reliability 

of the satellite momentum wheel, and then evaluates the reliability of the momentum wheel [11]. 

However, the momentum wheel data is collected under non-accelerated test conditions, that is, 

real-time monitoring data, and does not involve acceleration problems. Both Wang and Guo 

regard λ and σW as random variables, but the assumed distribution type has not been tested, and the 

EM algorithm given by it is computationally complex and not suitable for generalization [12, 13]. 

Cai and Tang regard λ as a random variable obeying normal distribution, and give a life model 

considering individual differences, which is convenient for calculation and achieve good model 

fitting effect [14, 15]. At present, the processing of nonlinear data mainly adopts the time scale 

transformation model which was first proposed by Whitmore [16]. Many literatures use its model, 

and the examples prove that it has good practicability [17]. Based on the above analysis, the 

leakage current degradation data is first time-scale transformed to make the nonlinear data of the 

leakage current change into linear data, and then λ is randomized to construct an accelerated 

degradation model considering individual differences, then the unknown parameters are 

estimated by maximum likelihood estimation method. Since x0 is almost negligible compared to 

the failure threshold, and x0 is more concentrated, only one point is outside the concentrated area, 

so x0 is averaged instead of x0 as a random variable if it is treated as a random variable. Not only is 

it unnecessary but also greatly increases the complexity of parameter estimation
 
[18].  

2.2 Acceleration Model Based on Random Variables  

The acceleration equation of the optocoupler leakage current satisfies the Arrhenius 

acceleration model. It is assumed that λ is related to the stress, the corresponding acceleration 

model is: 

 expi ia b T  
.
                                                             (2) 

In the above formula, a and b are unknown constants, and Ti is an absolute temperature. 

According to the above formula, the degradation rate is the same at each stress level. As 

mentioned above, the individual differences determine the inconsistency of the rate of 

degradation of different optocoupler leakage currents, and the error will occur with the use of 

deterministic parameters. Therefore, the acceleration equation of the j-th optocoupler under the 

i-th stress is: 

    2exp , ~ ,j

i j i j a aa b T a N   
.
                                           (3) 

It can be seen from the above formula that the drift coefficient λi considering the difference in 

the degradation of the optocoupler under the i-th stress can be expressed as: 

    2~ exp , expi a i a iN b T b T   
.
                                           (4) 

When σa
2
 is 0, the random variable Arrhenius model returns to the traditional model [19].  
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III. DATA DESCRIPTION BY WIENER PROCESS AND MODELING OF NONLINEAR 

DEGRADATION DATA UNDER STEP STRESS CONDITION 

3.1 Statistical Model of SSADT Data 

If there are n optocouplers performing step test under l stresses, the ki times data (i = 1, 2, ..., l) 

are measured under each stress, and the total number of measurements is 
1

l

i

i

K k


 . Then the 

measurement moment of the j-th optocoupler under the i-th stress is 
,

q
i

j

i k
t (i=1, 2,…, l, q=1, 2,…, Q, 

Q=ki), and the amount of performance degradation is  ,
q
i

j

i k
X t . It can be seen from the step test that 

the initial value of the degradation amount of the j-th photocoupler under the i-th stress is the end 

value of the degradation amount under the (i-1)-th stress, that is,    
1

,0 1,
= Q

i

j j

i i k
X t X t


. In view of this, 

for each optocoupler leakage current data model is established as follows: 

 

 

   

     

1

1 2
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0 2 1 2,0, 1, 1, , , 2,

,

1

0 ,0, 1, , 1, , , ,
1

0

=
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i i i

q Q Q q q Q
i i i i
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i

q Q Q Q q q Q
i i i iil l

Wi k i k i k k

Wi k k k i k i k kj

i k

l

l i W li k l k i k i k i k i k l k
i

x t W t t t

x t t t W t t t t
X t

x t t t t W t t t t

 

  

  




 


    



     



       




……
(5) 

Under the i-th stress, the j-th optocoupler has the performance degradation increment at the 

q-th measurement compared to the (q-1)-th measurement: 

     -1
, , ,

= -q q q
i i i

j j j

i k i k i k
X t X t X t

.
                                                              (6) 

The time interval is: 

-1
, , ,

= -q q q
i i i

j j j

i k i k i k
t t t

.
                                                                       (7) 

By the nature of the Wiener process: 

   2

, , ,
~ ,q q q

i i i

j j j

i Bi k i k i k
X t N t t   

.
                                                   (8) 

3.2 Model of Nonlinear Degradation Data  

For nonlinear data, the time scale transformation model proposed by Whitmore is used to 

transform it into linear data. Its common functions are: 

  ct t   
.
                                                                    (9) 

In the above formula, c is a constant and greater than zero. When c<1, the data is convexly 

degraded, and when c>1, the data is concavely degraded [20]. Both of these data are non-linear 

data. When c=1, the data is linear degradation, that is, linear data. When more and more nonlinear 

data appears in the data, the value of c begins to deviate slightly from 1, and the more nonlinear 

data, the greater the deviation of c value. The advantage of the above equation is that it can handle 

the case where linear and nonlinear data coexist. 

Therefore, this paper uses the above transformation model to rewrite the leakage current data 

from [t, X(t)] to [τ, Y(τ)] , so we can rewrite (1) as: 
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   0 WY x W     
.
                                                      (10) 

If failure threshold is Df, the lifetime reliability function of leakage current based on the 

Wiener process is: 

   
2

2
exp

f f f

WW W

D t D D t
R t

t t

  

 

      
               .

                                         (11) 

In the above formula, Φ(·) is a standard normal distribution function. After a simple 

derivation, the transformed reliability function can be obtained as follows: 

  
2

2
exp

f f f

WW W

D D D
R

  


   

      
          

     .

                                              (12) 

Order  t  
 
and Y(τ)=X(t), then the above formula can be turned into: 

    
 

 

 

 
2

2
exp

f f f

WW W

D t D D t
R t R t

t t

  

 

        
         
         .

                     (13) 

As described above, in order to reflect the difference in the degradation of the optical coupler, 

λ is randomized, and λ can be expressed in the form of equation (4). Let the λ mean be μλ and the 

variance be σλ
2
, then the above formula can be turned into: 

  
 

  

  

    

2 22 2

2 42 22 2 2 2 2

22 2
exp

f W ff f f

T

W W
W W W W

D D tD t D D
R t

t t t

 

 

    

      

   
       

        
         

   

(14) 

The above formula is the most concerned reliability function. Since q is related to stress, it is 

strictly a binary function. When the stress is given, such as constant stress, it becomes a unitary 

function [21]. So the next step is to estimate the relevant parameters in the above formula. 

 

IV. SOLUTION OF RELIABILITY FUNCTION 

4.1 Two-step Maximum Likelihood Estimation 

 In the foregoing, the leakage current data [t, X(t)] is converted into [τ, Y(τ)], so the equation (8) 

can be transformed into: 

   2

, , ,
~ ,q q q

i i i

j j j j

i Wi k i k i k
Y N                                                  (15) 

In the above formula,  

     1

1

1

, , ,

, , ,

,01,

1,0 0

1,2, ; 1,2, ; 1,2, ;

q q q
i i i

q q q
i i i

Q
i

j j j

i k i k i k

j j j

i k i k i k

j j

ii k

j

i

Y Y Y

i ,l  j = ,n  q = ,Q  Q = k

  

  

 









  

  











… … …

.

                                 (16) 



Design Engineering 
 

ISSN: 0011-9342 
Issue: 10 | Pages: 31 - 52 

 
 

[37] 

Where 
,

q
i

j

i k


 
is the incremental value of the time change of the q-th measurement of the j-th 

photocoupler under the i-th stress, and  ,
q
i

j

i k
Y   is the corresponding degradation increment. 

According to the above two formulas, the maximum likelihood estimation function is established: 

     2

2, , , ,
1 1 1 1 1

1
ln ln 2 ln ln

2 2 2
q q q q
i i i i

Q Ql n l
j j j j j

W ii k i k i k i k
i q j i qW

nK n
L Y      

    

          
   (17) 

Substituting τ=t
c
 and    , ,

=q q
i i

j j

i k i k
Y X    and formula (4) into the above formula, we can get: 

      

           

1

1 1

2

, ,
1 1

2

2 , , , , ,
1 1 1

ln ln 2 ln ln
2 2

1
exp

2

q q
i i

q q q q q
i i i i i

Ql c c
j j

W i k i k
i q

Qn l c c c c
j j j j j

j ii k i k i k i k i k
j i qW

nK n
L t t

X t a b T t t t t

 





 

 

  

 
      

    
             



 

.

(18) 

Let the first-order partial derivatives of 
ja  and 2

W  of the above formula be 0, that is, 

   

 

2

ln
0

ln
0

j

W

L

a

L




 


 

  .

                                                                (19) 

It can be found: 

   

     1

,
1 1

,
1 1

exp

ˆ =

exp 2

q
i

q q
i i

Ql
j

ii k
i q

j Ql c c
j j

i i k k
i q

X t b T

a

b T t t 

 

 

 

 
   




.

                                         (20) 

           1 1

2

2

, , , ,
1 1 1

1
ˆ expq q q q q

i i i i i

Qn l c c c c
j j j j j

W j ii k i k i k i k k
j i q

X t a b T t t t t
nK

  

  

    
             

 

.
  (21) 

Theoretically, equations (20) and (21) can be solved with degenerate data, but carefully 

observe the above two equations, which contain b and c, so the two-step maximum likelihood 

estimation method is used here [22]. 

The first step: the estimation of b̂
 
and ĉ . Both were estimated using the fminsearch function 

in Matlab software. But this function solves the minimum point, so a negative sign before the 

equation is used. Substitute equations (20) and (21) into equation (18), assign initial values to b 

and c, and then perform a two-dimensional traversal search to obtain estimates of b̂
 
and ĉ . 

The second step: Substituting the obtained estimates of b̂
 
and ĉ  into equations (20) and (21), 

an estimate of  ˆ
ja  and 2ˆ

W  (j = 1, 2, ..., 6) can be obtained. In addition, ˆ
a  and 2ˆ

a
 
can also be 

obtained by the following formula: 

 

 

1

2
2

1

1
ˆ

1
ˆ ˆ

n

a j

j

n

a j a

j

a
n

a
n



 










  






.

                                                   
 (22) 
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After ˆ
a  and 2ˆ

a  are obtained, according to equation (4), the mean and variance of λ under 

given stress conditions can be known. Therefore, the reliability function of the photocoupler 

leakage current degradation failure can be obtained by substituting it into equation (14). 

4.2 Threshold and Reliability Curves 

Through the previous derivation and established model, given n=6, l=4, k1=23, k2=11, k3=10, 

k4=9, T1=70+273.15, T2=90+273.15, T3=110+273.15, T0=25+273.15. Combined with the 

measured data, the parameters such as the drift coefficient and the diffusion coefficient can be 

calculated. 

TABLE I. Estimated values of various parameters 

 

b̂  ĉ  ˆ
 /10

-4 2ˆ
 /10

-8
 2ˆ

W /10
-4

 

3298.1 1.4951 3.6292 2.3819 4.3258 

 

The ˆ
  

and 2ˆ
  in the above table refer to the estimated values under normal temperature 

stress. By substituting the parameter values into equation (14), the concrete expression of the 

reliability function can be obtained.  

The concern now is the failure threshold Df. According to the failure mechanism verification 

test, the optocoupler enters an unstable state when Df=70 microamps, but at that time, the 

optocoupler has already produced a substantial failure, that is, the predetermined function cannot 

be completed. By communicating with optocoupler manufacturers, manufacturers can't give a 

clear statement, because there is no in-depth study of the storage reliability of the product, so it 

can not provide a specific failure threshold. Therefore, the sliding threshold is set, starting from 

60 microamps, and 2 microamps is the step size up to 70 microamps. Its reliability curve is shown 

in Figure 2. 

 

Fig 2: Optocoupler Wiener process reliability curve based on sliding threshold 

 

As shown in the above figure, the lowest reliability curve is the reliability curve when the 

failure threshold is 60 μA, which is arranged in order, and the reliability curve at the top is 70 μA. 

60 microamps 

70 microamps 
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As the threshold increases, it can be seen that t0.9 continues to increase, with t0.9 ranging from 

approximately 220,000 hours (approximately 25.46 years) to 237,600 hours (approximately 27.5 

years). 

 

V. RELIABILITY ASSESSMENT UNDER SUDDEN FAILURE CONDITIONS 

5.1 Description of Failure Data 

Now consider the storage reliability of optocouplers in the event of a sudden failure. The 

stress profile and optocoupler failure are shown in Figure 3.  

272 3520

Test time（h）

Stress levels（ ）

70

90

110

120

424184
 

Fig 3: Test profile and optocoupler failure nodes 

 

Assume that the formal test of the optocoupler has a total of n stress levels, 

S0<S1<…<Si<…<Sn (i=1, 2, 3, …, n). S0 is the stress level at room temperature (25℃). The 

number of samples that fail in stress Si is ri, and the failure time is: 

1 20
iir ii it t t     

.                                                      (23) 

i is the truncation point at the stress Si, that is, the moment when the stress changes. Suppose 

k samples are in the test. The total number of failed samples is 
1

n

i

i

r r


 , and the number of samples 

that have not failed at the time n  of the test truncation is k-r. Obviously, the failed data of the test 

belongs to the timing censoring type data. According to the actual situation, k=10, n=4, and r=2. 
 

5.2 Reliability Based on Weibull Distribution under Sudden Failure Conditions 

 As mentioned above, a total of 2 out of 10 optocouplers have a sudden failure. According to 

the previous experience, the sudden failure life function of this kind of optocoupler is Weibull 

distribution. So its distribution function is [23]: 
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( ) 1 exp , 1,2, ,

im

i

i

t
F t i n



  
     
   

 .                                           (24)
 

Where i  
and im

 
are the scale and shape parameters under stress iS , respectively. The 

following three basic assumptions for statistical analysis using the Weibull distribution are given 

below: 

1 The shape parameters under each stress level iS  are equal, that is, m0=m1=…=mn=m. 

2 The characteristic life i  and stress iS  of the product satisfy the Arrhenius acceleration 

equation [24]: 

ln ( )i ia b S    .                                                      (25) 

Where a=lnA and b=-Ea/R are unknown parameters, ( ) 1/ 1/i i iS S T   , i=1,2,…,n, and Ti is 

the absolute temperature. 

3 The residual life of the product depends only on the cumulative failure amount and the stress 

level at that time, and is independent of the cumulative mode (Nelson cumulative failure 

assumption). 

Since the formal test is a step test, except for the “true life” of the failure time in the first stress 

stage, the “life time” under the stress of the other stages needs to be converted. Here, the "life 

time" is converted to the first stress phase, that is, 70℃, and the first stress phase is represented by 

Sh. According to the definition in the literature, the acceleration factors Qi,h of stress Si and Sh is: 

,

1 1 1 1
exp expi a

i h

h i h h i

E
Q b

R T T T T





      
          

         
.                                (26) 

The failure time of the j-th failure sample under stress Si is converted to the failure time at a 

given stress Sh: 

1

, ,

1

i
h

ij i h ij l h l

l

t Q t Q 




    .                                            (27)

 

For those samples that have not failed at the test truncation time n , the time to convert to a 

given stress level Sh is: 

h

,

1

n

l h l

l

K 


  .                                                      (28) 

Among them, i=1, 2, …, n, 
1

n

i

i

r r


 , j=1, 2, …, ri, Kl,h is the acceleration factor.  

So the likelihood function can be derived as follows: 

1 1

1

1 1

( , , ) ( ) 1 ( )

exp exp ( )

i

i

rn
n r

h h

h ij

i j

m m mh hr hn
ij ij

i j h h h h

L b m f t F

t tm
n r

 



   



 



 

    

        
                         




.
                (29) 
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Find the logarithm of the above formula, we can get: 

 
1 1

ln ( , , ) ln ln ( 1) ln ln ( )
i

m mhr hn
ijh

h h ij h

i j h h

t
L b m m m t n r


  

  

    
                 

 .      (30) 

By solving partial differential equations: 

ln ln ln
0

h

L L L

b m

  
  

  
.                                              (31) 

Maximum likelihood estimates of unknown parameters ˆ ˆ ˆ( , , )hb m  in the Weibull distribution 

can be obtained. The estimated value of the characteristic lifetime 0  of the optocoupler at normal 

temperature stress levels is [25]: 

0

0

1 1ˆˆ ˆ exph

h

b
T T

 
  

    
   

.                                            (32) 

Further, at a given reliability R, the estimated lifetime tR of the product at a normal stress level 

is: 

ˆ ˆ1/ 1/

0

0

1 1ˆˆ ˆ ˆ( ln ) ( ln ) expm m

R h

h

t R R b
T T

 
  

         
   

.                      (33) 

Through the above derivation, the required reliability information is obtained. The question 

now becomes how to solve the partial differential equations. 

 

VI. PARAMETER ESTIMATION BASED ON “DATA ISLAND” METHOD 

6.1 Specific Steps for the “Data Island” Method.  

The previous section gives a specific formula for how to solve the parameter estimates in the 

Weibull distribution. Since the failure data is too small (<3), the approximate estimate of the 

parameters are not known. This section offers a new way for how to solve parameters in the 

Weibull distribution relatively accurately in the absence of prior information of the parameter 

estimates. In general, the equations of (31) are currently solved using math software. Since the 

equations of (31) have a transcendental equation, they cannot be solved by the elementary 

method. The math software solves the equations using the Newton-Raphson method. This method 

requires an initial value to be set for the parameter being solved. Although the Newton-Raphson 

method has a second-order convergence rate, it is highly dependent on the selected initial value 

[26]. If the initial value is not set properly, it directly affects the result of the solution [27]. The 

disadvantage of the Newton-Raphson method is that it is too dependent on initial values. Once 

when selected initial values are too far from the analytical solution, the convergence result will 

not be obtained. The question now is how to choose a reliable initial value so that the results are as 

accurate as possible while satisfying convergence. Since there is no relatively reliable initial value 

estimation in the optocoupler test, a simple initial value acquisition method is studied and the 
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method is called “Data Island”. When using the "data island" approach, we need to first 

acknowledge two assumptions: 

(1) The missile control cabin has at least 10 years of life at 0.9 reliability. 

(2) The m is not greater than 10. 

Essentially, these two assumptions belong to the added prior information. Without these two 

prior information, it is impossible to accurately assess the storage life of the optocoupler in the 

event of a sudden failure. 

Based on these two assumptions, the specific steps of the “data island” method are given. 

1). Determine how sensitive the three parameters (b, h ,m) are to the solution. The method is 

as follows: arbitrarily fix two parameters, make one parameter change, and observe the severity of 

the change of the optocoupler t0.9 reliability value. When fixed b= h =1, make m change.  

 

TABLE II. Estimated value of t0.9 for different m (unit: year) 

 

 m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

t0.9 

4.049

9×10
-

11 

1.950

9×10
-

11
 

2.579

9×10
-

11
 

4.395

8×10
-

11
 

2.315

7×10
-

11
 

7.199

2×10
-

12
 

2.635

7×10
-

16
 

6.457

8×10
-

15
 

5.433

6×10
-

16
 

5.807

2×10
-

20
 

When fixed m= h =1, make b change.  

 

TABLE III. Estimated value of t0.9 for different b (unit: year) 

 

 
b= 

1 

b= 

100 

b= 

1000 

b= 

3000 

b= 

6000 

b= 

10000 

b= 

30000 

b= 

60000 

b= 

90000 

t0.9 

4.049

9×10
-

11 

4.197

3×10
-

11
 

4.457

9×10
-

11
 

7.779

3×10
-

11
 

1.439

7×10
-

10
 

2.581

6×10
-

12
 

1.380

7×10
-

69
 

8.564

2×10
-

75
 

5.555

1×10
-

96
 

When fixed b=m=1, make h  change.  

 

TABLE IV. Estimated value of t0.9 for different h  (unit: year) 

 

 
h = 

1 

h = 

100 

h = 

1000 

h = 

3000 

h = 

6000 

h = 

10000 

h = 

30000 

h = 

60000 

h = 

90000 

t0.9 

4.049

9×10
-

11 

8.690

×10
-10

 

0.246

4 
0.031 

0.031

2 

0.031

4 
0.033 

0.033

9 

0.044

1 

 

It can be seen from the above three tables that when the other two are unchanged, when the 

value of m changes, there is a difference of 9 orders of magnitude in t0.9, and when the value of b 
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changes, there is a difference of 85 orders of magnitude in t0.9. When the value of h  changes, 

there is a difference of 10 orders of magnitude between t0.9. Therefore, the sensitivity of the initial 

values to the results is ranked as: 

b> h >m 

2). Preliminary determination of the range of values for each parameter. In theory, the wider 

the range of values, the better the establishment of the “data island”. However, if the ranges of the 

values are too large, the workload will increase sharply, the difficulty and time of the operation 

will increase, and the narrow ranges may miss the appropriate initial value. Therefore, it is 

necessary to comprehensively consider various factors to select an appropriate range of each value. 

Considering the engineering practice, for the sake of conservatism, the range of values should be 

appropriately relaxed. The range of b is [1, 15000], the range of h  is [1, 15000], and the step is 

1000, where the unit of h  is hour. 

3). Establishment of “Data Island”. Set the initial value of m to 10. When m is given, in steps 

of 1000, all the values of t0.9 corresponding to the initial values of the ranges of b and h  are 

calculated using math software. Then create a three-dimensional map with b and h  as the X and 

Y axes and t0.9 as the Z axis. In order to save space, all calculation results are not given. Intuitively, 

some calculation results are given here. For simplicity, note h  is  , and the estimated b̂  and ̂  

are of the order of magnitude 10
3
, the remaining parameters are of the order of 10

0
, and the unit of 

t0.9 is still a, ie year. 

 

TABLE V. Part estimated values of parameters under different b and   conditions when 

m=10 (unit: year) 

 

                 

 

b 

1 1000 2000 3000 … 15000 

1 

b̂ =-5.1869 

m̂ =0.1215 

̂ =0.498 

t0.9=5×10
-12 

b̂ =3.6922 

m̂ =2.433 

̂ =2.0647 

t0.9=0.496 

b̂ =-2.6458 

m̂ =1.1724 

̂ =2.0067 

t0.9=0.0104 

b̂ =-1.0158 

m̂ =1.0416 

̂ =3.0465 

t0.9=0.0258 

… 

b̂ =-0.7149 

m̂ =0.8484 

̂ =5.1366 

t0.9=0.0304 

1000 

b̂ =0.992 

m̂ =0.0423 

̂ =0.0047 

t0.9=6×10
-27

 

b̂ =3.4096 

m̂ =2.6 

̂ =1.8048 

t0.9=0.4111 

b̂ =1.6064 

m̂ =1.6 

̂ =1.6 

t0.9=0.1266 

b̂ =0.2763 

m̂ =1.1534 

̂ =2.9694 

t0.9=0.0553 

… 

b̂ =0.2624 

m̂ =0.9025 

̂ =5.0488 

t0.9=0.0543 

2000 

b̂ =1.8705 

m̂ =0.0409 

̂ =0.0047 

t0.9=2×10
-27

 

b̂ =4.3575 

m̂ =2.8444 

̂ =2.1095 

t0.9=0.7806 

b̂ =3.5469 

m̂ =1.9509 

̂ =2.5027 

t0.9=0.4482 

b̂ =1.283 

m̂ =1.2833 

̂ =2.8833 

t0.9=0.1027 

… 

b̂ =1.3435 

m̂ =0.9814 

̂ =4.9511 

t0.9=0.1057 
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… … … … … …  

15000 

b̂ =14.926 

m̂ =3.1104 

̂ =0.003 

t0.9=0.1514 

b̂ =15.119 

m̂ =0.0611 

̂ =0.983 

t0.9=1×10
-14

 

b̂ =15.425 

m̂ =0.0736 

̂ =1.877 

t0.9=1×10
-11

 

b̂ =15.162 

m̂ =0.0916 

̂ =2.909 

t0.9=6×10
-9

 

… 

b̂ =15.165 

m̂ =0.3209 

̂ =13.505 

t0.9=1.2612 

Build a three-dimensional graphic as shown in Figure 4. 

 

Fig 4: Construction of “Data Island” 

 

At this point, the construction of the “data island” is completed. Each Z-axis value determined 

by the X-axis and Y-axis values is like a small island, so this method is named “Data Island”. As 

mentioned above, the optocoupler has t0.9>10, so t0.9=10 can be compared to “sea level”, while the 

“island” t0.9 can be regarded as its “altitude”. When taking t0.9=10, because the “altitude” of some 

“islands” is too low, it will be submerged by “sea level”, as shown in Figure 5. 

 

Fig 5: “Data Island” with “Elevation” at 10 

 

As shown in the above figure, when the “sea level” is 10, many “islands” are inundated, and 

these “submerged” “islands” are the points that need to be eliminated. In the “islands” that are not 
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submerged, the parameter m̂  is discarded if it is estimated greater than 10. Since the reliability 

estimates are conservative, we look for the “islands” closest to “sea level” in islands that are not 

“submerged”. This allows us to determine a relatively accurate estimate of t0.9 and determine the 

approximate range of the initial value. 

4). “Island” search and elimination 

The appropriate "island" is generated in data points where the estimated t0.9 is greater than or 

equal to 10. These “islands” are examined in two steps.  

First, approximation of m value. Observing these data points, we can find that most of the m 

values are less than 5, so let m=5, and then solve these data points. Due to space limitations, the 

parameter estimates for the “islands” that are not submerged when m=5 are not given here. When 

m=5, the “altitude” of “island”, that is, t0.9, has changed, and some have “raised” and some 

“decreased”. Three “islands” were submerged by “sea level” due to the height drop, so these three 

points were eliminated. In addition, there is also an “island” that has been eliminated because it 

has a m estimated value of more than 10. Continue to observe the remaining estimates, it can be 

seen that the m value of most “islands” floats around 2, so take m=2, and then solve the relevant 

parameter estimates. Due to space limitations, the estimated values obtained are not given. By 

observing these values, it can be seen that the “altitude” of some “islands” has changed, and there 

are two cases of ascending or descending. But no “islands” have fallen below “sea level”. It can be 

known at present that the minimum value of t0.9 is 10.121, and the question now concerned is 

whether it is the minimum point sought. Therefore, the next step is to verify it.  

Second, the verification of the maximum iteration number solution and the convergence 

solution. As mentioned above, the mathematics software uses the Newton-Raphson method. It 

relies on the initial value. If the initial value is not set properly, the maximum iteration number 

solution is reached, that is, the convergence solution is not obtained. A theorem is given below: 

Theorem: If f(x) is continuous and the zero point to be solved is isolated, then there is a region 

around the zero point, and the Newton iteration must converge as long as the initial value lies 

within this neighborhood [28]. 

This theorem means that if the Newton iteration method does not converge, the initial value 

must not be in this region. Based on this, the parameter estimates b̂ , m̂  and ̂  obtained when m=2 

are returned to the initial value, and it is observed whether the equation can obtain a convergent 

solution. If the convergence solution is not obtained, the previously obtained parameter estimate 

is the maximum iteration number solution. It should be pointed out that Matlab can judge whether 

the solution converges by itself. If the word “fsolve stopped because it exceeded the function 

evaluation limit, options. MaxFunctionEvaluations = 300 (the default value).” appears, it is 

proved that the maximum number of iterations is reached, and the parameter estimation does not 

converge the equation. If the words “fsolve completed because the vector of function values is 

near zero as measured by the default value of the function tolerance, and the problem appears 

regular as measured by the gradient.”, it is proved that the iterative method converges, and the 

parameter estimation value can make the equation converged. On the other hand, as mentioned 
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above, the disadvantage of the Newton iteration method is that it is highly dependent on the initial 

value, and once the initial value deviates too far from the analytical solution, no convergence 

result is obtained. On the contrary, if the initial value is close to the analytic solution, the result of 

convergence must be obtained. This means that if the parameter estimates b̂ , m̂  and ̂  are 

returned to the initial value, if the newly obtained solutions 1b̂ , 1m̂  and 1̂  are extremely small 

compared to before, then b̂ , m̂  and ̂  necessarily converge the equation. In other words, b̂ , m̂  

and ̂  are in the same small convergence interval as 1b̂ , 1m̂  and 1̂ , and both sets of solutions will 

converge the equation. If two sets of parameter values are used to find t0.9, the change in t0.9 will be 

small, that is, no drastic changes will occur. There are 7 groups of data in the software solution 

process, the first type of words pops up, thus the maximum number of iterations is reached, and 

other 43 groups of data all pop up the second type of words, that is, all convergence, so the seven 

groups of data are eliminated. In addition, it can be seen that the changes in the t0.9 values of the 7 

sets of data are very intense, while the changes in the t0.9 values of the remaining data are 

extremely weak. The t0.9 values (43 in total) generated by the remaining data are sorted from small 

to large. Since the maximum and minimum values are very different, the point of interest is the 

minimum point. Therefore, for the convenience of observation, take about the first 60% of the 

data points, and draw a graph as shown in Figure 6. 

 

Fig 6: The trend of t0.9 obtained by part convergent solutions 

 

As shown above, the convergence of the t0.9 value obtained by the convergence solution is 

about 14.3 to 15.1 years, which are 9 points. As the value of t0.9 increases, the value of t0.9 

obtained by the convergence solution becomes more and more dispersed. If we make a 

conservative estimate, we can take the minimum value directly, or take the average of the 

parameter estimates of the 9 points, and then find t0.9, about 14.6 years.  

5) Determination of initial value and t0.9. The Newton-Raphson method was used to eliminate 

and select the “islands”, but since the solution solutions are locally optimal and there is no global 

optimization, the Newton-Raphson method can only indicate the minimum value of t0.9 and the 
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distribution trend of the convergence solution, which can be satisfied if a conservative assessment 

is made. But this may not be objective, so based on the Newton-Raphson method, return to 

starting point, the maximum likelihood estimation, using the convergence solution to solve lnL, 

the maximum value of the log-likelihood function. Obviously, the convergence solution that 

maximizes lnL and the t0.9 obtained by the convergence solution are the final desired results. As 

described above, since b̂ , m̂  and ̂  and 1b̂ , 1m̂  and 1̂  are in extremely small difference, the 

obtained lnL values are also extremely small. Therefore, the lnL values obtained by substituting b̂ , 

m̂  and ̂  and 1b̂ , 1m̂  and 1̂  are plotted in Figure 7. 

 

Fig 7: lnL values obtained from different parameter values 

 

As shown in the figure above, the arrow points to the maximum point of lnL. The orange 

five-pointed star represents the lnL value obtained using ( b̂ , m̂ , ̂ ), and the blue square 

represents the lnL value obtained using ( 1b̂ , 1m̂ , 1̂ ), and it can be seen that the lnL values obtained 

by the two are almost identical. So far, a reliable estimate of the relevant parameters and t0.9 has 

been obtained using the “data island” method, ie ( 1b̂ , 1m̂ , 1̂ ) is (8661.2, 3.73, 5560.7), t0.9≈17a. 

Of course, the initial value can also be considered as ( b̂ , m̂ , ̂ ), that is, (8660.8,3.7303,5559.8), 

and t0.9 is still about 17 years. 

6.2 Storage Reliability Under Sudden Failure Condition  

According to the calculation results above, taking b=8661.2, m=3.73, ˆ
h =5560.7 hours, the 

following acceleration equation can be obtained: 

 
8661.2

ln 16.5175i

iT
    .                                            (34)

 

By the formula (32), the characteristic lifetime of the photocoupler under normal temperature 

stress can be found to be 267866.9 hours (about 31.003 years). Therefore, the reliability of the 
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optocoupler under normal temperature stress (25 °C) is: 

   
3.73

2 1 exp
31.0031103

t
R t F t

  
     

    .                        (35)

 

Through the above formula, the sudden failure reliability curve of the optocoupler can be 

drawn.  

 

Fig.8 Storage reliability curve of sudden failure at 25 °C 

It can be seen from the above figure that under the condition of sudden failure, the storage 

reliability of the optocoupler is greater than 0.9 before 17 years, and then the reliability shows a 

rapid decline. 

6.3 Optocoupler Life Assessment in Storage Environment 

Through the previous modeling and derivation, the reliability function and reliability curve of 

the optocoupler under degraded failure and sudden failure have been respectively obtained. As 

mentioned above, for independent competition failures, the reliability function is multiplied by 

the degradation and sudden failure reliability functions. By multiplying the equations (35) and 

(16), the reliability function of the optocoupler under normal temperature stress can be obtained. 

Since the reliability function of degradation has multiple curves with the threshold movement, the 

reliability functions of different thresholds are multiplied by the reliability function of sudden 

failure. The reliability curves are shown in Figure 9. For ease of comparison, the sudden failure 

reliability curve and the degradation failure reliability curves are also plotted in Figure 9. 
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Fig 9: Total reliability curves of optocoupler storage 

 

As shown in the above figure, the lowest curve group is the total reliability curve, the middle 

dotted line is the reliability curve of the sudden failure, and the right upper curve group is the 

degenerate failure curve. As can be seen from the above figure, whether it is degradation failure or 

sudden failure, the total reliability curves are obviously closer to the lower left than the reliability 

curves of the two, that is, the total reliability is less than the reliability of any failure mode. 

However, when the reliability is 0.9, and the reliability is greater than 0.9, the curve group of the 

total reliability and the sudden failure reliability curve are almost completely coincident. When 

the reliability is lower than 0.9, starting from about 0.8, as the reliability decreases, the total 

reliability curve group begins to gradually deviate from the reliability curve of the sudden failure, 

and slowly approaches to the lower left. Since t0.9 is generally used as the reliability index, the 

storage life of the optocoupler is 147649 hours=17.089a≈17a, that is, given a reliability of 0.9, the 

storage life of the optocoupler is about 17 years. 

 

VII. SUMMARY 

For evaluating the reliability of long-term storage of optocouplers, the reliability of two-factor 

independent competition failure based on Wiener process-based degradation failure and 

Weibull-based sudden failure is carried out. The Wiener process reliability model constructed in 

this paper takes into account the individualized differences, randomizes the drift coefficients, and 

establishes the random variable Arrhenius model. This method is more consistent with the actual 

situation than the traditional method which does not consider the individual difference. Using the 

two-step MLE method, estimated values of unknown parameters can be solved to overcome the 

limitations of traditional estimation methods. The estimated value of c is 1.4951, obviously it is 

greater than 1, and it is concave degradation according to classification. If the degradation data of 

leakage current is directly regarded as linear data, the accuracy of the evaluation will inevitably be 

greatly reduced, therefore, the data is linearized to make it more consistent with the characteristics 

of the Wiener process. Secondly, the solution to the reliability of Weibull distribution is studied. 
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Due to the lack of parameter estimates, on the basis of reasonable assumptions, the “data island” 

method is offered. The essence of "Data Island" is to use reverse thinking and the mathematical 

thought of partial exhaustive + gradual approximation to deduce the estimated value of each 

parameter step by step under the premise of setting the priori conditions. For the case of less data 

failure, it is necessary to set a priori condition. In the case of three or more stresses with failure 

data, the parameter value can be estimated with the estimated parameter value as the center, and 

the estimation range of the parameter value can be appropriately widened, and the required 

estimation value can be quickly found by using this method. According to the calculation in this 

paper, in fact  (that is h ) the value range is too wide, which increases the calculation and 

workload. Through engineering experience, the upper limit of   (that is h )  is often not greater 

than 10000. Therefore, it is also important to choose the appropriate scope. There are some 

extended assumptions about the "data island" approach: 

(1) With the expansion of the value range of b and h , the convergent solution (that is, the 

convergent interval) becomes more and more sparse on the whole number line. However, the 

convergent solution always exists, and there is no case where the convergent solution (that is, the 

convergent interval) completely disappears after the value of b and h  exceed certain points. 

(2) From the properties of the maximum likelihood function and the practical meaning of the 

solution, the maximum value of lnL will always be at front of the t0.9 ranking from small to large. 

No matter how the value ranges of b and h  are extended, the position of the maximum value of 

lnL will not change, and the value of lnL will only get smaller and smaller (or the overall trend is 

smaller and smaller). 

The above two conjectures are related to the further study of Weibull distribution-based 

maximum likelihood function, which is far from engineering practice and belongs to the research 

category of pure mathematical theory. 

The shortcoming of this paper is that there are too few test samples, only 10. Although it meets 

the minimum number of test samples (≥7), it brings great trouble to solve the parameters of 

sudden failure. Of course, test samples are scarce because of their specific uses. However, in the 

future work, we still need to obtain more samples, which is the cornerstone of evaluating the 

accuracy of the conclusion. Otherwise life expectancy is a fancy but unrealistic number game. 
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